Reinforcement Learning for Characterizing Hysteresis Behavior of Shape Memory Alloys

نویسندگان

  • Kenton Conrad Kirkpatrick
  • John Valasek
چکیده

The ability to actively control the shape of aerospace structures has spawned the use of shape memory alloy actuators. These actuators can be used for morphing or shape control by modulating their temperature, which is effectively done by applying a voltage difference across their length. Characterization of this temperature–strain relationship is currently done using constitutive models, which is time and labor intensive. Shape memory alloys also contain both major and minor hysteresis loops. Understanding the hysteresis is crucial for practical applications, and characterization of the minor hysteresis loops, which map the behavior of a wire that is not fully actuated, is not possible using the constitutive method. Numerical simulation using reinforcement learning has been used for determining the temperature–strain relationship and characterizing the major and minor hysteresis loops, and determining a control policy relating applied voltage to desired strain. This paper extends and improves upon the numerical simulation results, using an experimental hardware apparatus and improved reinforcement learning algorithms. Results presented in the paper verify the numerical simulation results for determining the temperature–strain major hysteresis loop behavior, and also determine the relationships of the minor hysteresis loops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinforcement Learning for Determining Temperature/Strain Behavior of Shape Memory Alloys

The ability to actively control the shape of aerospace structures has led to the implementation of Shape Memory Alloy actuators. These actuators can be used for morphing or shape control by modulating their temperature, which is effectively done by applying a voltage difference across their length. Characterization of this temperaturestrain relationship is currently done using constitutive mode...

متن کامل

Characterization of Shape Memory Alloy Behavior and Position Control Using Reinforcement Learning

Intelligent, autonomous, shape-controllable structures based on Shape Memory Alloy materials have the potential to provide advanced aircraft and spacecraft systems with the ability to morph, or change their shape for the purpose of optimizing performance. An important aspect of this capability is control of the shape modifications themselves, which benefits from accurate models of the voltage/c...

متن کامل

Reinforcement Learning for Active Length Control of Shape Memory Alloys

The ability to actively control the shape of aerospace structures has initiated research regarding the use of Shape Memory Alloy actuators. These actuators can be used for morphing or shape change by controlling their temperature, which is effectively done by applying a voltage difference across their length. The ability to characterize this temperature-strain relationship using Reinforcement L...

متن کامل

Experimental Hysteresis Identification and Micro-position Control of a Shape-Memory-Alloy Rod Actuator

In order to exhaustively exploit the high-level capabilities of shape memory alloys (SMAs), they must be applied in control systems applications. However, because of their hysteretic inherent, dilatory response, and nonlinear behavior, scientists are thwarted in their attempt to design controllers for actuators of such kind.  The current study aims at developing a micro-position control system ...

متن کامل

Characterization and Control of Hysteretic Dynamics Using Online Reinforcement Learning

Hysteretic dynamical systems are challenging to control due to their hard nonlinearity and difficulty in modeling. One type of systemwith hysteretic dynamics that is gaining use in aerospace systems is the shape-memory alloy-based actuator. These actuators provide aircraft and spacecraft systems with the ability to achieve component-level or vehicle-level geometry or shape changes. Characteriza...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JACIC

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2009